A role for Pareto optimality in mining performance data
نویسنده
چکیده
Improvements in performance modeling and identification of computational regimes within software libraries is a critical first step in developing software libraries that are truly agile with respect to the application as well as to the hardware. It is shown here that Pareto ranking, a concept from multi-objective optimization, can be an effective tool for mining large performance datasets. The approach is illustrated using software performance data gathered using both the public domain LAPACK library and an asynchronous communication library based on IBM LAPI active message library.
منابع مشابه
Solution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method
For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...
متن کاملPERFORMANCE-BASED MULTI-OBJECTIVE OPTIMUM DESIGN FOR STEEL STRUCTURES WITH INTELLIGENCE ALGORITHMS
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal push...
متن کاملOptimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملLow-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach
This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...
متن کاملUse of Pareto-Optimal and Near Pareto-Optimal Candidate Rules in Genetic Fuzzy Rule Selection
Genetic fuzzy rule selection is an effective approach to the design of accurate and interpretable fuzzy rule-based classifiers. It tries to minimize the complexity of fuzzy rule-based classifiers while maximizing their accuracy by selecting only a small number of fuzzy rules from a large number of candidate rules. One important issue in genetic fuzzy rule selection is the prescreening of candid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Concurrency - Practice and Experience
دوره 17 شماره
صفحات -
تاریخ انتشار 2005